Pairwise Grouping Using Color

نویسندگان

  • Marius Leordeanu
  • Martial Hebert
چکیده

Grouping was recognized in computer vision early on as having the potential of improving both matching and recognition. Most papers consider grouping as a segmentation problem and a hard decision is made about which pixels in the image belong to the same object. In this paper we instead focus on soft pairwise grouping, that is computing affinities between pairs of pixels that reflect how likely that pair is to belong to the same object. This fits perfectly with our recognition approach, where we consider pairwise relationships between features/pixels. Some other papers also considered soft pairwise grouping between features, but they focused more on geometry than appearance. In this paper we take a different approach and show how color could also be used for pairwise grouping. We present a simple but effective method to group pixels based on color statistics. By using only color information and no prior higher level knowledge about objects and scenes we develop an efficient classifier that can separate the pixels that belong to the same object from those that do not. In the context of segmentation where color is also used only nearby pixels are generally considered, and very simple color information is taken into account. We use global color information instead and develop an efficient algorithm that can successfully classify even pairs of pixels that are far apart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perceptual Grouping and Segmentation by Stochastic Clustering

We use cluster analysis as a unifying principle for problems from low, middle and high level vision. The clustering problem is viewed as graph partitioning, where nodes represent data elements and the weights of the edges represent pairwise similarities. Our algorithm generates samples of cuts in this graph, by using David Karger’s contraction algorithm, and computes an ”average” cut which prov...

متن کامل

The influence of color grouping on users' visual search behavior and preferences

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the co...

متن کامل

Pairwise Clustering with Matrix Factorisation and the EM Algorithm

In this paper we provide a direct link between the EM algorithm and matrix factorisation methods for grouping via pairwise clustering. We commence by placing the pairwise clustering process in the setting of the EM algorithm. We represent the clustering process using two sets of variables which need to be estimated. The first of these are cluster-membership indicators. The second are revised li...

متن کامل

Motion and color generate coactivation at postgrouping identification stages.

Response times (RTs) were measured in a postgrouping visual identification task. Shapes composed of multiple elements were distinguished by color, motion, orientation, and spatial frequency alone or in pairwise conjunctions. The largest amount of redundancy gain, requiring coactivation as revealed by a race model analysis, was obtained with color-motion conjunctions. In contrast, RTs for a preg...

متن کامل

An expectation-maximisation framework for segmentation and grouping

This paper casts the problem of perceptual grouping into an evidence combining setting using the apparatus of the EM algorithm. We are concerned with recovering a perceptual arrangement graph for line-segments using evidence provided by a raw perceptual grouping field. The perceptual grouping process is posed as one of pairwise relational clustering. The task is to assign line-segments (or othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008